

CSA201-P030T01 电流传感器

产品使用手册

V1.11

感谢您选用银河电气 CSA201-P030T01 电流传感器

本手册为湖南银河电气有限公司产品 CSA201-P030T01 电流传感器用户手册,本手册为用户提供安装调试、操作使用及日常维护的有关注意事项,在安装、使用前请仔细阅读。本手册随产品一起提供,请妥善保管、以备查阅和维护使用。

声明

我们非常认真的整理此手册,但我们对本手册的内容不保证完全正确。因为我们的产品一直在持续的改良及更新,故我方保留随时修改本手册的内容而不另行通知的权利。同时我们对不正确使用本手册所包含内容而导致的直接、间接、有意、无意的损坏及隐患概不负责。

安全操作知识

- ◆ 产品使用前,请您务必仔细阅读用户手册。
- ◆ 需对产品进行搬动时,请您务必先断电并将与之相连的所有连接线缆等拔掉。
- ◆ 如果发现机壳、稳固件、电源线、连接线缆,或相连的设备有任何损坏,请您立即将装置与电源断开。
- ◆ 如果对设备的安全运行存在疑虑,应立即关闭设备和相应附件,并在最快时间内与本公司 技术支持部门取得联系,沟通解决。

!安全警示

电流传感器不允许开路使用,即母线有电流或传感器已上电的状态下,都不允许断开输出端;仅母线无电流且传感器未上电的状态下,才可以断开传感器的电流输出端,否则有感应高压,发生电击的危险!

1. 产品概述

CSA201-P030T01 是一种能在原边、副边完全隔离条件下测量直流、交流、脉冲以及各种不规则波形的电流传感器,它主要用于要求准确度高的计量检定和计量校准领域,以及要求高灵敏度、高稳定性和高可靠性的电能质量分析、功率分析仪、医疗、航空航天、舰艇等领域。

2. 技术特点

•	极高	竹	准确	亩
•		HЭ	ᄺᄢ	$-\infty$

- 极好的线性度
- 极高的稳定性
- 极高的灵敏度
- 极高的分辨率
- 极低的温度漂移
- 极低的失调电流

- 极低的插入损耗
- 抗干扰能力强
- 响应速度快
- 极低的噪声
- 极小的角差
- 宽频带
- 模拟量输出

3. 应用场合

- 计量检定与校准
- 实验室电流测量
- 仪器仪表 (如功率分析仪)
- 医疗设备 (如核磁共振 MRI)
- 电池组检测
- 电力控制

- 电源
- 舰船
- 新能源
- 轨道交通
- 航空航天
- 工业测量

4. 电气性能

以下性能指标默认为 $T_A=25^{\circ}C$ ($\pm 5^{\circ}C$)、 $U_C=\pm 15V$ 、 $R_M=35\Omega$ 条件下所标称,特殊见测试条件。

项目	符号	测试条件		单位		
≪ □	ב מו	1 1 1 CVO-WEAV	最小	标称	最大	+12
原边额定电流(DC)	I _{PN DC}		-200		200	A
原边额定电流(AC rms)	I _{PN AC}			141		A
原边过载电流	I _{P OL}	1 分钟/小时	-240		240	A
工作电压(DC)	Uc	全范围	±12		±15	V
电流消耗	\mathbf{I}_{c}	I _{POL} 范围内	±35	±235	±275	mA
电流变比	$\mathbf{K}_{\mathbf{N}}$	输入:输出		1000:1		
额定输出电流	I_{SN}	原边额定电流		±200		mA
测量由加	D	Uc: ±12 V, I _{PN DC} : ±200 A	0		25	Ω
测量电阻 	$\mathbf{R}_{\mathbf{M}}$	Uc: ±15 V, I _{PN DC} : ±200 A	0		35	Ω

5. 精度-动态参数

项目	符号	测试条件	数值			单位	
		1715 Page 1	最小	最小 标称 最			
精度	X_e	输入直流			10	μA/A	
比差误差	X_{Ge}	te) かた sour /sour			100	μA/A	
角度误差	Δφ	输入交流 50Hz/60Hz			0.3438	,	
线性度	εL				2	μA/A	
温度漂移系数	T _{COUT}				0.1	(μA/A) /K	
时间漂移系数	TT				0.2	(µA/A) /month	
供电抗干扰	TV				1	(μA/A) /V	
零点失调电流	I _o	25±10°C			2	μA/A	
零点失调电流	I_{oT}	全工作温度范围内			±10	μA/A	
纹波电流	In	DC ~ 10Hz			0.5	μA/A	
动态响应时间	$t_{ m r}$				1	μs	
电流跟随速度	di/dt		100			A/μs	
带宽 (- 3 dB)	BW		0		300	kHz	

注:以上所有"%"、"µA/A"指的是相应输出二次电流满量程。

6. 一般特性

项目	符号	测试条件	数值			单位
7			最小	标称	最大	· .
工作温度范围	T _A		-10		+70	°C
存储温度范围	Ts		-25		+85	°C
输出状态指示信号		当输出状态指示信号灯(绿色 LED)亮时,表示产品工作正常 且母排输入的电流没有超出其承受能力,这时与 OD 门电路 D 板 连的 DB9 插座第 8 脚为低电平;当输出状态指示信号灯灭时, 示产品工作不正常或母排输入的电流值超出其承受能力,这时 D 插座第 8 脚为高电平。即 DB9 插座第 8 脚为低电平时产品输出 号有效,当它为高电平时产品输出信号无效 [©] 。				
质量	m	0.5±0.02 kg				

注①: DB9 插座第 8 脚接内置场效应管漏极 (即 D 极) 相连,它与 GND 端构成 OD 门电路 (即 Open Drain 输出形式),第 8 脚与 GND 端间耐压值为 60V,最大输出电流 2mA。

7. 安全特性

项	符号	测试条件		单位				
**	П	בינו	1/1/1/1/1/11	最小	标称	最大	<u> </u>	
瞬态隔离耐压	原、副边之间	$\mathbf{U}_{\mathbf{w}}$	50μs		5		kV	
相比漏电起痕指数		CTI	IEC-60112		600		V	

8. 外形尺寸及端口定义

8.1. 外形尺寸 (单位: mm)

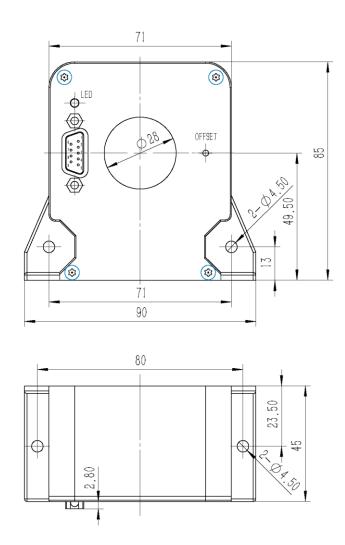
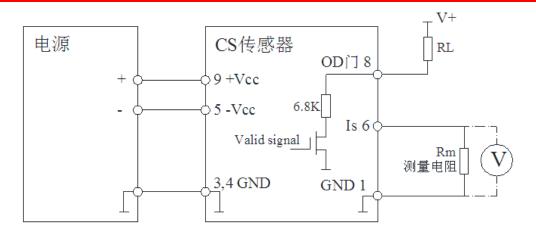


图1 外形图

外形图说明:

● 公差:外形尺寸、安装定位尺寸公差按照 GB/T1804-2000 C 级标准执行。


● 连接端子型号: DB9 公头。

8.2. DB9 端子定义

引脚 号	1, 3, 4	2、7	5	6	8	9
定义	GND 端	NC 端	-Vc 端	Is 输出端	有效指示	+Vc 端

9. 应用连接及说明

电气连接图

测试说明:

通过测量流过 R_M 的电流 I_s 或者 R_M 两端的压降 U_R ,根据下式可以得到原边电流 I_P : $I_{P}=K_N*I_s=K_N*(U_R/R_M)$

其中输出状态指示信号输出端DB9第8脚与GND端间为OD门电路,最高可承受电压60V,最大可承受电流2mA。

10. 包装清单

序号	名称	型号及规格	数量	备注
1	电流传感器	CSA201-P030T01	1件	
2	连接器	DB9 母头	1件	
3	产品使用手册	CSA201-P030T01	1份	

11. 注意事项

- 上电时,须先上电流传感器供电电源,再通测量回路电流;断电时,先断开测量回路电流,再分断电流传感器供电。否则有可能造成传感器的精度下降或者传感器损坏。
- 传感器通入工作电或者接入测量回路电流时,副边不允许开路。
- 输入电流 I₂的方向与外形图中箭头标示的方向一致时,输出电流 Is 为正向。
- 原边导体请尽可能位于探头孔径中心位置。
- 原边导体温度不能超过 100℃。
- 此模块为标准传感器,对于特殊的应用请与我们联系。
- 我们保留对本传感器手册修改的权利, 恕不另行通知。

地址: 湖南省长沙市经济技术开发区开元路 17 号湘商世纪鑫城 43 楼

邮编: 410073

前台: 0731-8839 2988 传真: 0731-8839 2900 商务: 0731-8839 2955 技术咨询: 0731-8839 2611 售后服务: 0731-8839 2988-218

网址: www.vfe.ac.cn

